Minimum size limit for useful locomotion by free-swimming microbes.

نویسنده

  • D B Dusenbery
چکیده

Formulas are derived for the effect of size on a free-swimming microbe's ability to follow chemical, light, or temperature stimuli or to disperse in random directions. The four main assumptions are as follows: (i) the organisms can be modeled as spheres, (ii) the power available to the organism for swimming is proportional to its volume, (iii) the noise in measuring a signal limits determination of the direction of a stimulus, and (iv) the time available to determine stimulus direction or to swim a straight path is limited by rotational diffusion caused by Brownian motion. In all cases, it is found that there is a sharp size limit below which locomotion has no apparent benefit. This size limit is estimated to most probably be about 0.6 micron diameter and is relatively insensitive to assumed values of the other parameters. A review of existing descriptions of free-floating bacteria reveals that the smallest of 97 motile genera has a mean length of 0.8 micron, whereas 18 of 94 nonmotile genera are smaller. Similar calculations have led to the conclusion that a minimum size also exists for use of pheromones in mate location, although this size limit is about three orders of magnitude larger. In both cases, the application of well-established physical laws and biological generalities has demonstrated that a common feature of animal behavior is of no use to small free-swimming organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suspension biomechanics of swimming microbes.

Micro-organisms play a vital role in many biological, medical and engineering phenomena. Some recent research efforts have demonstrated the importance of biomechanics in understanding certain aspects of micro-organism behaviours such as locomotion and collective motions of cells. In particular, spatio-temporal coherent structures found in a bacterial suspension have been the focus of many resea...

متن کامل

Unifying constructal theory for scale effects in running, swimming and flying.

Biologists have treated the view that fundamental differences exist between running, flying and swimming as evident, because the forms of locomotion and the animals are so different: limbs and wings vs body undulations, neutrally buoyant vs weighted bodies, etc. Here we show that all forms of locomotion can be described by a single physics theory. The theory is an invocation of the principle th...

متن کامل

Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus.

The platypus Ornithorhynchus anatinus Shaw displays specializations in its limb structure for swimming that could negatively affect its terrestrial locomotion. Platypuses walked on a treadmill at speeds of 0.19-1.08 m x s(-1). Video recordings were used for gait analysis, and the metabolic rate of terrestrial locomotion was studied by measuring oxygen consumption. Platypuses used walking gaits ...

متن کامل

Disinfection byproducts in swimming pool water in Sanandj, Iran

The present study aimed to determine the concentrations of several disinfection byproducts (DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs), in the public and private swimming pools in Sanandaj, Iran (n=16). Correlations between DBP levels with water quality parameters (free chlorine, pH, total organic carbon, temperature, number of swimme...

متن کامل

The long-time dynamics of two hydrodynamically-coupled swimming cells.

Swimming microorganisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 20  شماره 

صفحات  -

تاریخ انتشار 1997